We Support The Free Share of the Medical Information



Facebook Dr. Ramon Reyes, MD


sábado, 31 de diciembre de 2016

Can oxygen hurt our patients?

Can oxygen hurt our patients?

Can oxygen hurt our patients?

The drug we use most often in EMS can cause harm if we give it without good reason

Updated October 24, 2016
EMS providers began giving oxygen not because it had medically or scientifically demonstrated benefits for patients, but because they could. Yet, inarguably, hypoxia is bad.
John Scott Haldane, who formulated much of our understanding of gas physiology, said in 1917, “Hypoxia not only stops the motor, it wrecks the engine.”
Patients begin to suffer impaired mental function at oxygen saturations below 64 percent. People typically lose consciousness at saturations less than 56 percent, giving airplane passengers no more than 60 seconds to breathe supplemental oxygen when an airplane flying at 30,000 feet suddenly depressurizes [1-3].
More recent studies suggest that hyperoxia, or too much oxygen, can be equally dangerous. Hence the drug EMS providers administer most often may not be as safe as originally thought.
Studies on benefits and dangers of oxygen therapy are not new; intensive care practitioners have long recognized the adverse effects of using high concentration oxygen [4]
The Amercian Heart Association Guidelines for Emergency Cardiac Care and CPR in 2000 and 2005 recommended against supplemental oxygen for patients with saturations above 90 percent. The 2010 ECC Guidelines called for supplemental oxygen only when saturations are less than 94 percent [5]. Though the AHA continues to recommend high-flow oxygen administration when CPR is in progress.
Research on patient outcomes after hyperoxia
What is new are prehospital research studies comparing outcomes of patients treated without oxygen or with oxygen titrated to saturations versus patients routinely given high flow oxygen. These data are frightening; they invariably show impressive patient harm from even short periods of hyperoxia. 
We’ve known since 1999 that oxygen worsened survival in patients with minor to moderate strokes and made no difference for patients with severe stroke [6]. In fact, the American Heart Association recommended in 1994 against supplemental oxygen for non-hypoxemic stroke patients.
The dangers from giving oxygen to neonates have also been long appreciated [7]. The most compelling outcome studies of neonates published in 2004 and repeated in 2007 showed a significant increase in mortality of depressed newborns resuscitated with oxygen (13 percent) versus room air (8 percent) [9]. This led to the current neonatal resuscitation recommendations for use of room air positive pressure ventilation.
In 2002, a study of 5,549 trauma patients in Texas showed prehospital supplemental oxygen administration nearly doubled mortality [9]. A Tasmanian study of prehospital difficulty breathing patients published in 2010 compared patients treated with oxygen titrated to saturations of 88 to 92 percent to patients treated with non-rebreather oxygen masks.
It showed a reduction in deaths during subsequent hospitalization of 78 percent in COPD patients and 58 percent in all patients [10]. New studies are showing a troubling pattern of worse outcomes associated with hyperoxia post cardiac arrest [11].
Why would oxygen worsen patient outcomes?
One mechanism may be absorption atelectasis. Gas laws mandate that increases in the concentration of one gas will displace or lower the concentration of others. Room air normally contains 21 percent oxygen, 78 percent nitrogen, and less than 1 percent carbon dioxide and other gases.
Nitrogen, the most abundant room air gas, is responsible for secretion of surfactant, the chemical that prevents collapse of the alveoli at end expiration. Premature infants often are not developed sufficiently to produce surfactant and require endotracheal administration of animal surfactant.
“Washout” of nitrogen in adult lungs occurs when high concentration oxygen is administered. Lower concentrations of nitrogen can lead to decreased surfactant production with subsequent atelectasis and collapse of alveoli, significantly impeding oxygen exchange.
Oxygen is also a free radical, meaning that it is a highly reactive species owing to its two unpaired electrons. From a physics perspective, free radicals have potential to do harm in the body.
The sun, chemicals in the atmosphere, radiation, drugs, viruses and bacteria, dietary fats, and stress all produce free radicals. Cells in the body endure thousands of hits from free radicals daily.
Normally, the body fends off free radical attacks using antioxidants. With aging and in cases of trauma, stroke, heart attack or other tissue injury, the balance of free radicals to antioxidants shifts.
Cell damage occurs when free radicals outnumber antioxidants, a condition called oxidative stress. Many disease processes including arthritis, cancer, diabetes, Alzheimer’s and Parkinson’s result from oxidative stress.
The concept of free radical damage suggests the old EMS notion that, “high flow oxygen won’t hurt anyone in the initial period of resuscitation” may be dead wrong.
Tissue damage is directly proportionate to the quantity of free radicals present at the site of injury. Supplemental oxygen administration during the initial moments of a stroke, myocardial infarct (MI) or major trauma may well increase tissue injury by flooding the injury site with free radicals.
Finally, consider this: five minutes of supplemental oxygen by non-rebreather decreases coronary blood flow by 30 percent, increases coronary resistance by 40 percent due to coronary artery constriction, and blunts the effect of vasodilator medications like nitroglycerine [12]. These effects were demonstrated dramatically in cath lab studies [13] published in 2005.
Now you know why the ECC Guidelines recommend against supplemental oxygen for chest pain patients without hypoxia. Supplemental oxygen reduces coronary blood flow and renders the vasodilators ALS providers use to treat chest pain ineffective.
Where do we go from here?
Knowing that both hypoxia and hyperoxia are bad, EMS providers must stop giving oxygen routinely. Oxygen saturations should be measured on every patient.
Protocols need to be aligned to reflect the current ACLS and BLS ECC guidelines: administer oxygen to keep saturations between 94 and 96 percent. No patient needs oxygen saturations above 97 percent and in truth, there is little to no evidence suggesting any clinical benefit of oxygen saturations above 90 percent in any patient.
Modifications in prehospital equipment will be inherent in controlling oxygen doses administered to patients. In all likelihood, the venturi mask will make a comeback, allowing EMS providers to deliver varied concentrations of oxygen as needed to keep oxygen saturations between 94 and 96 percent.
Few patients will require non-rebreather masks which are prone to deliver too much oxygen (hyperoxia). CPAP (Continuous Positive Airway Pressure) devices will also need redesign as most conventional EMS CPAP delivers 100 percent oxygen. A study conducted by Bledsoe, et al in Las Vegas found that prehospital CPAP using low oxygen levels (28 to 30 percent) was highly effective and safe [14].
Bottom line: the drug we use most often can cause harm if we give it without good reason. In the absence of low saturations, oxygen will not help patients with shortness of breath and it may actually hurt them. The same holds true for neonates and virtually any patient with ongoing tissue injury from stroke, MI or trauma. Indeed, oxygen can be bad.
  1. Akero A, Christensen CC, Edvardsen A, et al. Hypoxaemia in chronic obstructive pulmonary disease patients during a commercial flight. Eur Respir J 2005;25:725–30.
  2. Cottrell JJ, Lebovitz BL, Fennell RG, et al. Inflight arterial saturation: continuous monitoring by pulse oximetry. Aviat Space Environ Med 1995;66:126–30.
  3. Hoffman CE, Clark RT, Brown EB. Blood oxygen saturations and duration of consciousness in anoxia at high altitudes. Am J Physiol 1946;145:685–92.
  4. Alteiemer WA, Sinclair SE. Hyperoxia in the intensive care unit: why more is not always better. Curr Opin Crit Care 2007;13:73-78.
  5. O'Connor RE, Brady W, Brooks SC, Diercks D, Egan J, Ghaemmaghami C, Menon V, O'Neil BJ, Travers AH and Yannopoulos D. 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science Part 10: Acute Coronary Syndromes. Circulation 2010; 122: S787-S817.
  6. Ronning OM, Guldvog B. Should Stroke Victims Routinely Receive Supplemental Oxygen? A Quasi-Randomized Controlled Trial. Stroke 1999;30:2033-2037.
  7. Rabi Y, Rabi D, Yee W: Room air resuscitation of the depressed newborn: a systematic review and meta-analysis. Resuscitation 2007;72:353-363.
  8. Davis PG, Tan A, O’Donnell CP, et al: Resuscitation of newborn infants with 100% oxygen or air: a systematic review and meta-analysis. Lancet 2004;364:1329-1333.
  9. Stockinger ZT, McSwain NE. Prehospital Supplemental Oxygen in Trauma Patients: Its Efficacy and Implications for Military Medical Care. Mil Med. 2004;169:609-612.
  10. Austin MA, Wills KE, Blizzard L, Walters EH, Wood-Baker R. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial. BMJ 2010;341:c5462.
  11. Kilgannon JH, Jones AE, Parillo JE, at al. Emergency Medicine Shock Research Network (EMShockNet) Investigators. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation 2011;14:2717-2722.
  12. Harten JM, Anderson KJ, Kinsella J, et al. Normobaric hyperoxia reduces cardiac index in patients after coronary artery bypass surgery. J Cardiothorac Vasc Anesth 2005;19:173–5.
  13. McNulty PH, et al. Effects of supplemental oxygen administration on coronary blood flow in patients undergoing cardiac catheterization. Am J Physiol Heart Circ Physiol 2005; 288: H1057-H1062.
  14. Bledsoe BE, Anderson E, Hodnick R, Johnson S, Dievendorf E. Low-Fractional Oxygen Concentration Continuous Positive Airway Pressure Is Effective In The Prehospital Setting. Prehosp Emerg Care 2012;16:217-221.

About the author

Mike McEvoy, PhD, NRP, RN, CCRN is the EMS Coordinator for Saratoga County, New York and a paramedic supervisor with Clifton Park & Halfmoon Ambulance. He is a nurse clinician in cardiothoracic surgical intensive care at Albany Medical Center where he also Chairs the Resuscitation Committee and teaches critical care medicine. He is a lead author of the “Critical Care Transport” textbook and Informed® Emergency & Critical Care guides published by Jones & Bartlett Learning. Mike is a frequent contributor to EMS1.com and a popular speaker at EMS, Fire, and medical conferences worldwide.Contact Mike at mike.mcevoy@ems1.com.

  1. Tags
  3. AHA CPR Guidelines
  5. Airway Management
  7. EMS Education
  9. EMS Training
  11. Evergreen
  13. Fire-EMS
  14. Gear / Gadgets
  16. Medical / Clinical
  18. Medical Monitoring
  20. Opioids
  22. Oxygen
  24. Oxygen Administration
  25. Pharmacology
  27. Products
  29. Pulse Oximetry
  31. STEMI
  33. Stroke
  35. Stroke Care
  37. Survivability
  39. Trauma

jueves, 29 de diciembre de 2016

8 Plantas más venenosas del planeta

El árbol de la muerte (Hippomane mancinella)

Las plantas más venenosas del mundo

El árbol de la muerte (Hippomane mancinella)

Belladona (Atropa belladonna)

Ricino (Ricinus communis)





Skype: drtolete

Facebook: @drramonreyesdiaz

LinkeIn https://es.linkedin.com/in/drramonreyes

Twitter: @DrtoleteMD

Instagram: https://www.instagram.com/drtolete/

¿Por qué el Desfibrilador TELEFUNKEN?

El DESFIBRILADOR de Telefunken es un DESFIBRILADOR AUTOMÁTICO sumamente avanzado y muy fácil de manejar.

Fruto de más de 10 años de desarrollo, y avalado por TELEFUNKEN, fabricante con más de 80 años de historia en la fabricación de dispositivos electrónicos.

El desfibrilador TELEFUNKEN cuenta con las más exigentes certificaciones.

Realiza automáticamente autodiagnósticos diarios y mensuales.

Incluye bolsa y accesorios.

Dispone de electrodos de "ADULTO" y "PEDIÁTRICOS".
Tiene 6 años de garantía.
Componentes kit de emergencias
Máscarilla de respiración con conexión de oxígeno.
Tijeras para cortar la ropa
Guantes desechables.

¿ Qué es una Parada Cardíaca?

Cada año solo en paises como España mueren más de 25.000 personas por muerte súbita.

La mayoría en entornos extrahospitalarios, y casi el 80-90 % ocasionadas por un trastorno eléctrico del corazón llamado"FIBRILACIÓN VENTRICULAR"

El único tratamiento efectivo en estos casos es la "Desfibrilación precoz".

"Por cada minuto de retraso en realizar la desfibrilación, las posibilidades de supervivencia disminuyen en más de un 10%".

¿ Qué es un desfibrilador ?

El desfibrilador semiautomático (DESA) es un pequeño aparato que se conecta a la víctima que supuestamente ha sufrido una parada cardíaca por medio de parches (electrodos adhesivos).

¿ Cómo funciona ?


El DESA "Desfibrilador" analiza automáticamente el ritmo del corazón. Si identifica un ritmo de parada cardíaca tratable mediante la desfibrilación ( fibrilación ventricular), recomendará una descarga y deberá realizarse la misma pulsando un botón.


El desfibrilador va guiando al reanimador durante todo el proceso, por medio de mensajes de voz, realizando las órdenes paso a paso.


Únicamente si detecta este ritmo de parada desfibrilable (FV) y (Taquicardia Ventricular sin Pulso) permite la aplicación de la descarga. (Si por ejemplo nos encontrásemos ante una víctima inconsciente que únicamente ha sufrido un desmayo, el desfibrilador no permitiría nunca aplicar una descarga).

¿Quién puede usar un desfibrilador TELEFUNKEN?

No es necesario que el reanimador sea médico, Enfermero o Tecnico en Emergencias Sanitarias para poder utilizar el desfibrilador.

Cualquier persona (no médico) que haya superado un curso de formación específico impartido por un centro homologado y acreditado estará capacitado y legalmente autorizado para utilizar el DESFIBRILADOR (En nuestro caso la certificacion es de validez mundial por seguir los protolos internacionales del ILCOR International Liaison Committee on Resuscitation. y Una institucion de prestigio internacional que avale que se han seguido los procedimientos tanto de formacion, ademas de los lineamientos del fabricante como es el caso deeeii.edu

TELEFUNKEN en Rep. Dominicana es parte de Emergency Educational Institute International de Florida. Estados Unidos, siendo Centro de Entrenamiento Autorizado por la American Heart Association y American Safety and Health Institute (Por lo que podemos certificar ILCOR) Acreditacion con validez en todo el mundo y al mismo tiempo certificar el lugar en donde son colocados nuestros Desfibriladores como Centros Cardioprotegidos que cumplen con todos los estanderes tanto Europeos CE como de Estados Unidos y Canada


Dimensiones: 220 x 275 x 85mm

Peso: 2,6 Kg.

Clase de equipo: IIb


Temperatura: 0° C – + 50° C (sin electrodos)

Presión: 800 – 1060 hPa

Humedad: 0% – 95%

Máximo Grado de protección contra la humedad: IP 55

Máximo grado de protección contra golpes:IEC 601-1:1988+A1:1991+A2:1995

Tiempo en espera de las baterías: 3 años (Deben de ser cambiadas para garantizar un servicio optimo del aparato a los 3 años de uso)

Tiempo en espera de los electrodos: 3 años (Recomendamos sustitucion para mantener estandares internacionales de calidad)

Número de choques: >200

Capacidad de monitorización: > 20 horas (Significa que con una sola bateria tienes 20 horas de monitorizacion continua del paciente en caso de desastre, es optimo por el tiempo que podemos permanecer en monitorizacion del paciente posterior a la reanimacion)

Tiempo análisis ECG: < 10 segundos (En menos de 10 seg. TELEFUNKEN AED, ha hecho el diagnostico y estara listo para suministrar tratamiento de forma automatica)

Ciclo análisis + preparación del shock: < 15 segundos

Botón información: Informa sobre el tiempo de uso y el número de descargas administradas durante el evento con sólo pulsar un botón

Claras señales acústicas y visuales: guía por voz y mediante señales luminosas al reanimador durante todo el proceso de reanimación.

Metrónomo: que indica la frecuencia correcta para las compresiones torácicas. con las Guias 2015-2020, esto garantiza que al seguir el ritmo pautado de compresiones que nos indica el aparato de forma acustica y visual, podremos dar RCP de ALTA calidad con un aparato extremadamente moderno, pero economico.

Normas aplicadas: EN 60601-1:2006, EN 60601-1-4:1996, EN 60601-1:2007, EN 60601-2-4:2003

Sensibilidad y precisión:

Sensibilidad > 90%, tip. 98%,

Especificidad > 95%, tip. 96%,

Asistolia umbral < ±80μV

Protocolo de reanimación: ILCOR 2015-2020

Análisis ECG: Ritmos cardiacos tratables (VF, VT rápida), Ritmos cardiacos no tratables (asistolia, NSR, etc.)

Control de impedancia: Medición9 de la impedancia continua, detección de movimiento, detección de respiración

Control de los electrodos : Calidad del contacto

Identificación de ritmo normal de marcapasos

Lenguas: Holandés, inglés, alemán, francés, español, sueco, danés, noruega, italiano, ruso, chino

Comunicación-interfaz: USB 2.0 (El mas simple y economico del mercado)

Usuarios-interfaz: Operación de tres botones (botón de encendido/apagado , botón de choque/información.

Indicación LED: para el estado del proceso de reanimación. (Para ambientes ruidosos y en caso de personas con limitaciones acusticas)

Impulso-desfibrilación: Bifásico (Bajo Nivel de Energia, pero mayor calidad que causa menos daño al musculo cardiaco), tensión controlada

Energía de choque máxima: Energía Alta 300J (impedancia de paciente 75Ω), Energía Baja 200J

(impedancia de paciente 100Ω)

miércoles, 28 de diciembre de 2016



"Para algunos, el trastorno no es más que una irritación moderada. Pero para otros la psoriasis puede volverlos retraídos o dificultar la socialización o la formación de relaciones debido a la forma como la gente reacciona a la apariencia de su piel"
Dr. Robert Hicks

Una de las enfermedades más comunes de la piel y que hasta ahora ha sido imposible prevenir es la psoriaris.
Este trastorno, que afecta a 3% de la población, está vinculado a un sistema inmune “hiperactivo”.
Y ocurre cuando las células de la piel se dividen demasiado rápido produciendo placas escamosas formadas por células muertas que no se desprenden de la superficie.

¿Cuáles son los síntomas?

Normalmente toma unos 28 días para que las células de la piel recién formadas aparezcan en la superficie y se separen del tejido sano.
Pero con la psoriasis este proceso ocurre en sólo dos a seis días.
La enfermedad se caracteriza por placas escamosas costrosas y rojas que revelan una pequeña película plateada cuando se les rasca o araña.
Estos parches producen comezón y pueden ser muy incómodos.
Por lo general aparecen más comúnmente en las rodillas, codos y cuero cabelludo, pero pueden presentarse en cualquier parte del cuerpo, incluida la cara.
En algunos casos el trastorno también puede afectar a las uñas y las articulaciones.
La psoriasis pude tener efectos en la persona que van desde leves y moderados hasta desfiguraciones que pueden ser socialmente discapacitantes.
Existen diversos tipos de psoriasis, pero el más común es la psoriasis en placas.
El trastorno es crónico o puede durar muchos años. La mayoría de quienes lo sufren tienen periodos en los que los síntomas son mínimos o la piel parece normal. Pero posteriormente surge un nuevo brote.
“El impacto de la psoriasis en una persona varía” explica a la BBC el doctor Robert Hicks, experto en medicina familiar y salud masculina.
“Para algunos el trastorno no es más que una irritación moderada. Pero para otros la psoriasis puede volverlos retraídos o dificultar la socialización o la formación de relaciones debido a la forma como la gente reacciona a la apariencia de su piel”, agrega el experto.

¿Qué causa la enfermedad?

Todavía se desconoce la causa precisa por la cual aparece la psoriasis, por eso es imposible prevenirla.
Sin embargo, se cree que el sistema inmune juega un papel en la enfermedad.
Un tipo de células inmunes llamadas linfocitos T atacan a las células sanas de la piel y el organismo reacciona con la producción de nuevas células.
Los estudios han encontrado varios factores que parecen provocar el trastorno, incluida una lesión en la piel, infecciones de garganta o pectorales, ciertos tratamientos farmacológicos, quemaduras de sol y estrés.
Una investigación reciente en Estados Unidos encontró que las mujeres que beben cerveza con regularidad tienen más riesgo de desarrollar psoriasis.
Los investigadores creen que el responsable es el gluten que contiene la cebada que se utiliza en la fermentación de la cerveza.
Por lo general la enfermedad se presenta en familias y se han encontrado varios genes vinculados a la psoriasis.
“Es importante destacar que esta enfermedad no es contagiosa ni es causada por una mala higiene corporal” señala el doctor Hicks.
La psoriasis afecta a hombres y mujeres por igual y puede surgir a cualquier edad, aunque ocurre con más frecuencia entre los 10 y los 40 años, principalmente durante la adolescencia.
También puede afectar a los niños pero rara vez se presenta en menores de dos años.


Los tratamientos de primera línea incluyen emolientes, que son preparaciones grasosas que evitan la pérdida de agua e hidratan la piel.
También se usan los suavizantes de piel y terapias tópicas, como derivados de vitamina D, preparaciones de alquitrán, esteroides, formulaciones de antralina y derivados de vitamina A.
Recientemente se ha estado probando la terapia de luz ultravioleta B y los medicamentos sistémicos y biológicos diseñados para bloquear las moléculas específicas del sistema inmune que provocan el desarrollo de la psoriasis.
Pero éstos deben utilizarse bajo supervisión del especialista.
“El tratamiento recomendado dependerá del tipo, severidad y ubicación de la psoriasis” señala el doctor Hicks.
“Por eso es importante consultar al médico”.

Otros problemas de salud

Investigaciones recientes revelan que la gente que sufre psoriasis tiene mayor riesgo de desarrollar otras enfermedades.
Un estudio de 2009 llevado a cabo en la Escuela Médica de Harvard descubrió que las mujeres que sufren este trastorno tienen más probabilidades de desarrollar diabetes tipo 2 e hipertensión.
Los científicos creen que la responsable podría ser la inflamación asociada con el trastorno de la piel.
Los investigadores también creen que el uso de terapias esteroides o de otros tratamientos que suelen recetarse para la psoriasis podrían estar provocando esas enfermedades en estos pacientes.
Tal como señalan los autores en Archives of Dermatology (Archivos de Dematología) “este estudio ilustra la importancia de considerar a la psoriasis como un trastorno sistémico y no simplemente una enfermedad de la piel”.
“Es necesario llevar a cabo más estudios para entender mejor los mecanismos que subyacen a este vínculo e investigar si la terapia para la psoriasis puede tener un impacto en el riesgo de diabetes e hipertensión”.
Publicado por:
Skype drtolete